The
 Systems of the World by Riccioli

Dott.ssa E. Lazzari

University of Ferrara, Department of Mathematics

Giovanni Battista Riccioli

- Ferrara, 17 april 1598 - Bologna, 25 june 1671;
- Jesuit astronomer and geographer;
- Almagestum novum astronomiam veterem novamque complectens (Bologna, 1651).

Almagestum novum

- reconstruct traditional astronomy by integrating it with contemporary advances;
- provide an encyclopedia of ancient and modern astronomy;
- make available a didactically useful text for the education of astronomers.

Introduction

Ptolemaic system

I. Syftema Pythagora Ptolemai isc.

Copernican system

Ticonic system

V. Syftema Tychonicum.

Introduction

Cappella system

III. Syftema Ægyptiorum, Vitruuif, Capella, Macrobij, Bedx \& © .

Riccioli system

Introduction

Trajectory of Mars

The model was drawn by Kepler using Tycho's data. The earth is stationary and is located at the center of the universe.

The educational pathway for in-depth study

Feature

Topic	Timelines
Epicycloids, hypocycloids, hypothrocoids and epitrocoides	2 hours
Target audience	Tools
Second biennium of high school	$\underline{\text { Methodology }}$
	Peer education, teaching laboratory

Feature

Indicazioni Nazionali (2010), Specific learning goals

Physics: "The study of gravitation [...] will enable the student to acquire a deeper knowledge of the 16th- and 17th-century debate on cosmological systems within a historical and philosophical framework."

Philosophy: "Regarding modern philosophy, essential themes and authors will be: the scientific revolution and Galilei, [...]."

History: "It is appropriate that some crucial themes (for example: the birth of scientific culture in the seventeenth century, [...]) be treated in an interdisciplinary way, in relation to the other teachings."

Lesson content (Epicycloids)

Lesson content (Epicycloids)

Vary the sliders R and r, which represent the radius of the base circle and epicycle, respectively, and answer the following questions. If the ratio n between the radii R and r is:

- a natural number, the curve is \qquad
- a rational number, the curve is \qquad
Although you cannot experiment with it in GeoGebra, what do you think will happen if n is irrational?

Lesson content (Epicycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

Lesson content (Epicycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

If n is a natural number:

1. Closed
2. Unbraided
3. n
4. 1

Lesson content (Epicycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

If $n=a / b$ rational number:

1. Closed
2. Braided
3. a
4. b

Lesson content (Epicycloids)

Property.

If the ratio n between the radii of the base circle and the epicycle is:

- a natural number, the curve is closed and unbraided and has n cusps (trajectory is periodic);
- a rational number, the curve is closed and braided (trajectory is periodic);
- an irrational number, the curve is open (trajectory is aperiodic).

Lesson content (Epicycloids)

Discover some special cases of the epicycloid by varying the sliders R and r as required.

- Vary sliders R and r so that $n=1$. Are you familiar with this curve?

Try with different values of R and r from before, keeping their ratio constant $n=1$. What differences are there between the new curve and the previous one?

- Vary sliders R and r so that $n=2$. Do you know this curve?

Try with different values of R and r from before, keeping their ratio constant $n=2$. What differences are there between the new curve and the previous one?

Try your own experiment, varying the R and r sliders, and look for other interesting curves. Keep trace of your best successful attempts. \qquad

Lesson content (Epicycloids)

Special cases.

- The cardioid is an epicycloid with $n=1$.
- Nephroid is an epicycloid with $n=2$.

Lesson content (Hypocycloids)

Definition.

The hypocycloid is the curve described by a fixed point on the circumference of a circle as it rolls on the inside circumference of a fixed circle.

Lesson content (Hypocycloids)

00
Ipocicloide 1 - GeoGebra

Ipocicloide 2 - GeoGebra

Vary the sliders R and r, which represent the radius of the base circle and epicycle, respectively, and answer the following questions. If the ratio n between the radii R and r is:

- a natural number, the curve is \qquad
- a rational number, the curve is \qquad
Although you cannot experiment with it in GeoGebra, what do you think will happen if n is irrational?
\qquad -

Lesson content (Hypocycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

Lesson content (Hypocycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

If n is a natural number:

1. Closed
2. Unbraided
3. n
4. 1

Lesson content (Hypocycloids)

Lesson content (Hypocycloids)

Stimulus questions

1. Is the curve open or closed?
2. Is the curve braided or unbraided?
3. How many revolutions does the epicycle make around its center to close the curve?
4. How many revolutions of the deferens does the epicycle make to close the curve?

If $n=a / b$ rational number:

1. Closed
2. It depends
3. a
4. b

Lesson content (Hypocycloids)

Lesson content (Hypocycloids)

Property.

If the ratio n between the radii of the base circle and the epicycle is:

- a natural number, the curve is closed and corresponds to an unbraided n-pointed star (trajectory is periodic);
- a rational number, the curve is closed and corresponds to a star (trajectory is periodic);
- an irrational number, the curve is open (trajectory is aperiodic).

Lesson content (Hypocycloids)

Discover some special cases of the hypocycloid by varying the sliders R and r as required.

- Vary sliders R and r so that $n=2$. Are you familiar with this curve?

Try with different values of R and r from before, keeping their ratio constant $n=2$. What differences are there between the new curve and the previous one? \qquad

- Vary sliders R and r so that $n=4$. Do you know this curve?

Try with different values of R and r from before, keeping their ratio constant $n=4$. What differences are there between the new curve and the previous one?

Try your own experiment, varying the R and r sliders, and look for other interesting curves. Keep trace of your best successful attempts. \qquad

Lesson content (Hypocycloids)

Special cases.

- A hypocycloid with $n=2$ is a segment (Cardano's theorem).
- An asteroid is a hypocycloid with $n=4$.

Lesson content (Epitrochoid)

Definition.

The epitrochoid is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

Lesson content (Hypotrochoid)

Definition.

The hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a base circle of radius R, where the point is a distance d from the center of the interior circle.

DEMOTIB. STELLEMARTIS

THANK YOU FOR YOUR ATTENTION

Dott.ssa E. Lazzari lzzlne@unife.it

