

The Systems of the World by Riccioli

Dott.ssa E. Lazzari

lzzlne@unife.it

University of Ferrara, Department of Mathematics

Giovanni Battista Riccioli

- Ferrara, 17 april 1598 Bologna, 25 june 1671;
- Jesuit astronomer and geographer;
- Almagestum novum astronomiam veterem novamque complectens (Bologna, 1651).

Almagestum novum

- reconstruct traditional astronomy by integrating it with contemporary advances;
- provide an encyclopedia of ancient and modern astronomy;
- make available a didactically useful text for the education of astronomers.

Introduction

Introduction

Cappella system

III. Syftema Ægyptiorum, Vitruuij, Capellæ, Macrobij, Bedæ &c.

Riccioli system

Introduction

DE MOTIB. STELLÆ MARTIS

Trajectory of Mars

The model was drawn by Kepler using Tycho's data. The earth is stationary and is located at the center of the universe.

The educational pathway for in-depth study

Dott.ssa E. Lazzari

lzzlne@unife.it

University of Ferrara, Department of Mathematics

Feature

<u>Topic</u>

Epicycloids, hypocycloids, hypothrocoids and epitrocoides

Timelines

2 hours

<u>Tools</u>

Photocopy, dynamic geometry software

Target audience

Second biennium of high school

<u>Methodology</u>

Peer education, teaching laboratory

Feature

Indicazioni Nazionali (2010), Specific learning goals

Physics: "The study of gravitation [...] will enable the student to acquire a deeper knowledge of the 16th- and 17th-century debate on cosmological systems within a historical and philosophical framework."

Philosophy: "Regarding modern philosophy, essential themes and authors will be: the scientific revolution and Galilei, [...]."

History: "It is appropriate that some crucial themes (for example: the birth of scientific culture in the seventeenth century, [...]) be treated in an interdisciplinary way, in relation to the other teachings."

Definition.

The *epicycloid* is the curve described by a fixed point on the circumference of a circle as it rolls on the outside of the circumference of a fixed circle.

Vary the sliders R and r, which represent the radius of the base circle and epicycle, respectively, and answer the following questions. If the ratio n between the radii R and r is:

• a natural number, the curve is ______

• a rational number, the curve is ______

Although you cannot experiment with it in GeoGebra, what do you think will happen if n is irrational?

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the deferens does the epicycle make to close the curve?

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the 4. 1 deferens does the epicycle make to close the curve?

<u>If n is a natural number:</u>

- 1. Closed
- 2. Unbraided
- 3. n

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the deferens does the epicycle make to close the curve?

If n = a/b rational number:

- 1. Closed
- 2. Braided
- 3. *a* cíao

4. *b*

Property.

If the ratio *n* between the radii of the base circle and the epicycle is:

- a natural number, the curve is closed and unbraided and has n cusps (trajectory is periodic);
- a rational number, the curve is closed and braided (trajectory is periodic);
- an irrational number, the curve is open (trajectory is aperiodic).

Discover some special cases of the epicycloid by varying the sliders *R* and *r* as required.

• Vary sliders *R* and *r* so that n = 1. Are you familiar with this curve?

Try with different values of *R* and *r* from before, keeping their ratio constant n = 1. What differences are there between the new curve and the previous one?

• Vary sliders *R* and *r* so that n = 2. Do you know this curve?

Try with different values of *R* and *r* from before, keeping their ratio constant n = 2. What differences are there between the new curve and the previous one?

Try your own experiment, varying the *R* and *r* sliders, and look for other interesting curves. Keep trace of your best successful attempts.

Definition.

The *hypocycloid* is the curve described by a fixed point on the circumference of a circle as it rolls on the inside circumference of a fixed circle.

Vary the sliders R and r, which represent the radius of the base circle and epicycle, respectively, and answer the following questions. If the ratio n between the radii R and r is:

• a natural number, the curve is

• a rational number, the curve is _____

Although you cannot experiment with it in GeoGebra, what do you think will happen if *n* is irrational?

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the deferens does the epicycle make to close the curve?

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the 4. 1 deferens does the epicycle make to close the curve?

<u>If n is a natural number:</u>

- 1. Closed
- 2. Unbraided
- 3. n

Stimulus questions

- 1. Is the curve open or closed?
- 2. Is the curve braided or unbraided?
- 3. How many revolutions does the epicycle make around its center to close the curve?
- 4. How many revolutions of the deferens does the epicycle make to close the curve?

If n = a/b rational number:

- 1. Closed
- 2. It depends
- 3. *a* ciao
- 4. *b*

Property.

If the ratio *n* between the radii of the base circle and the epicycle is:

- a natural number, the curve is closed and corresponds to an unbraided n-pointed star (trajectory is periodic);
- a rational number, the curve is closed and corresponds to a star (trajectory is periodic);
- an irrational number, the curve is open (trajectory is aperiodic).

Discover some special cases of the hypocycloid by varying the sliders R and r as required.

• Vary sliders *R* and *r* so that n = 2. Are you familiar with this curve?

Try with different values of *R* and *r* from before, keeping their ratio constant n = 2. What differences are there between the new curve and the previous one?

• Vary sliders *R* and *r* so that n = 4. Do you know this curve?

Try with different values of *R* and *r* from before, keeping their ratio constant n = 4. What differences are there between the new curve and the previous one?

Try your own experiment, varying the *R* and *r* sliders, and look for other interesting curves. Keep trace of your best successful attempts.

Lesson content (Epitrochoid)

Definition.

The *epitrochoid* is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.

Lesson content (Hypotrochoid)

Definition.

The *hypotrochoid* is a roulette traced by a point attached to a circle of radius r rolling around the inside of a base circle of radius R, where the point is a distance d from the center of the interior circle.

DE MOTIB. STELLÆ MARTIS

THANK YOU FOR YOUR ATTENTION

Dott.ssa E. Lazzari

lzzlne@unife.it